LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS
 SECOND SEMESTER - APRIL 2010

ST 2812 - TESTING STATISTICAL HYPOTHESES

Date \& Time: 19/04/2010 / 1:00-4:00

Dept. No.

Max. : 100 Marks

SECTION - A

Answer ALL the following questions
$(10 \times 2=20$ marks $)$

1. Give an example for a multiple decision problem.
2. Define a Bayes decision rule.
3. Give an example of an invariant decision problem.
4. What is a randomized test?
5. Define power function of a test.
6. Define an unbiased test.
7. Define similar test.
8. State the correspondence between Acceptance Regions and Confidence Sets.
9. Give a testing situation where both 'Unbiasedness' and "Invariance' principles lead to the same optimum procedures.
10. State the test statistic for testing hypothesis about the variance of a normal population under the Likelihood Ratio criterion.

SECTION - B

Answer any FIVE of the following questions
(5x $8=40$ marks $)$
11. For the two decision problem with $\mathrm{d}_{0}: \theta \in \Theta_{0}$ and $\mathrm{d}_{1}: \theta \in \Theta_{1}$ and with loss function $\mathrm{L}\left(\theta, \mathrm{d}_{\mathrm{o}}\right)=a$ for $\theta \in \Theta_{1}, 0$ for $\theta \in \Theta_{\mathrm{o}}$ and $\mathrm{L}\left(\theta, \mathrm{d}_{1}\right)=b$ for $\theta \in \Theta_{\mathrm{o}}, 0$ for $\theta \in \Theta_{1}$, show that every minimax procedure is unbiased.
12. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ and suppose one wishes to test $H: X \sim f_{1}\left(x_{1}-\theta, \ldots, x_{n}-\theta\right)$ versus K : $X \sim f_{1}\left(x_{1}-\theta, \ldots, x_{n}-\theta\right)$. Obtain UMPIT under location transformations.
13. Using a random sample from $U(0, \theta)$ derive UMPT for $H: \theta \geq \theta_{0}$ versus $K: \theta<\theta_{0}$.
14. Let \mathbf{X} have distribution $\mathrm{P} \in \mathscr{P}$ and T be a sufficient statistic for \mathscr{P}. Show that a necessary and sufficient condition for all similar tests to have Neyman structure is that the family. \mathscr{P}^{T} of distributions of T is boundedly complete.
15. Obtain the UMPUT for $\mathrm{H}: ~ \sigma=\sigma_{\mathrm{o}}$ versus $\mathrm{K}: ~ \sigma \neq \sigma_{\mathrm{o}}$ in the case of normal distribution with known mean and deduce the 'side conditions' that are required to be satisfied.
16. If $\mathrm{X} \sim \mathrm{B}\left(\mathrm{m}, \mathrm{p}_{1}\right)$ and $\mathrm{Y} \sim \mathrm{B}\left(\mathrm{n}, \mathrm{p}_{2}\right)$ and are independent, derive UMPUT for $H: p_{1} \leq p_{2}$ versus $K: p_{1}>p_{2}$.
17. If λ denotes the likelihood ratio for testing a simple hypothesis H based on a random sample from a distribution, derive the asymptotic distribution of λ under H by stating the required assumptions.
18. Obtain the Likelihood Ratio Test for equality of means of ' k ' normal populations with a common variance.

SECTION - C

Answer any TWO of the following questions
19. (a) Let $X \sim P_{\theta}$ with MLR in $T(x)$. Obtain the form of UMPT for $H: \theta \leq \theta_{0}$ versus $\mathrm{K}: \theta>\theta_{0}$. Show that its power function $\beta_{\varphi}(\theta)$ is strictly increasing for all θ for which $0<\beta_{\varphi}(\theta)<1$. Apply this to obtain UMPT for one-parameter exponential family.
(b) Derive UMP test for one-sided hypotheses concerning the parameter of a Poisson Process under 'Inverse Poisson Sampling'.
20. Let $f_{1}, f_{2}, \ldots, f_{\mathrm{m}+1}$ be real-valued μ-integrable functions and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{m}}$ be given constants. Let $\mathscr{C}=\left\{\phi \mid \int \phi f_{\mathrm{i}} \mathrm{d} \mu=\alpha_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{~m}\right\}$ be a class of critical functions. Establish the existence of a critical function in \mathscr{C}, sufficient condition and necessary condition on the form of the critical function in \mathscr{C} for maximization of $\int \phi f_{m+1} d \mu$.
21. (a) Discuss UMPUT for $\mathrm{H}: \theta=\theta_{0}$ versus $\mathrm{K}: \theta \neq \theta_{0}$ where θ is a single interesting parameter in a multiparameter exponential family.
(b) Obtain UMPUT for testing the independence of attributes in a 2×2 contingency table.
22. Based on independent samples X_{1}, \ldots, X_{m} from $N\left(\mu_{1}, \sigma_{1}{ }^{2}\right)$ and Y_{1}, \ldots, Y_{n} from $\mathrm{N}\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$, consider the problem of testing H: $\sigma_{2}{ }^{2} / \sigma_{1}{ }^{2} \leq \Delta_{0}$ versus $\mathrm{K}: \sigma_{2}{ }^{2} / \sigma_{1}{ }^{2}>\Delta_{0}$. Obtain (a) UMPUT and (b) UMPIT under a suitable group of transformations; and show that they coincide.
(10+10)

