LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS

SECOND SEMESTER – APRIL 2010

ST 2812 - TESTING STATISTICAL HYPOTHESES

Date & Time: 19/04/2010 / 1:00 - 4:00 Dept. No.

SECTION – A

Answer ALL the following questions

(10 x 2 = 20 marks)

Max.: 100 Marks

- 1. Give an example for a multiple decision problem.
- 2. Define a Bayes decision rule.
- 3. Give an example of an invariant decision problem.
- 4. What is a randomized test?
- 5. Define power function of a test.
- 6. Define an unbiased test.
- 7. Define similar test.
- 8. State the correspondence between Acceptance Regions and Confidence Sets.
- 9. Give a testing situation where both 'Unbiasedness' and "Invariance' principles lead to the same optimum procedures.
- 10. State the test statistic for testing hypothesis about the variance of a normal population under the Likelihood Ratio criterion.

<u>SECTION – B</u>

Answer any FIVE of the following questions

 $(5x \ 8 = 40 \ marks)$

- 11. For the two decision problem with $d_0: \theta \in \Theta_0$ and $d_1: \theta \in \Theta_1$ and with loss function $L(\theta, d_0) = a$ for $\theta \in \Theta_1$, 0 for $\theta \in \Theta_0$ and $L(\theta, d_1) = b$ for $\theta \in \Theta_0$, 0 for $\theta \in \Theta_1$, show that every minimax procedure is unbiased.
- 12. Let $X = (X_1, ..., X_n)$ and suppose one wishes to test H: $X \sim f_1(x_1 \theta, ..., x_n \theta)$ versus K: $X \sim f_1(x_1 - \theta, ..., x_n - \theta)$. Obtain UMPIT under location transformations.
- 13. Using a random sample from U(0, θ) derive UMPT for H: $\theta \ge \theta_0$ versus K: $\theta < \theta_0$.
- 14. Let **X** have distribution $P \in \mathscr{P}$ and T be a sufficient statistic for \mathscr{P} . Show that a necessary and sufficient condition for all similar tests to have Neyman structure is that the family \mathscr{P}^{T} of distributions of T is boundedly complete.
- 15. Obtain the UMPUT for H: $\sigma = \sigma_0$ versus K: $\sigma \neq \sigma_0$ in the case of normal distribution with known mean and deduce the 'side conditions' that are required to be satisfied.
- 16. If X ~ B(m, p₁) and Y ~ B(n, p₂) and are independent, derive UMPUT for H: p₁ ≤ p₂ versus K: p₁ > p₂.

- 17. If λ denotes the likelihood ratio for testing a simple hypothesis H based on a random sample from a distribution, derive the asymptotic distribution of λ under H by stating the required assumptions.
- 18. Obtain the Likelihood Ratio Test for equality of means of 'k' normal populations with a common variance.

<u>SECTION – C</u>

Answer any TWO of the following questions

 $(2x\ 20 = 40\ marks)$

19. (a) Let $X \sim P_{\theta}$ with MLR in T(x). Obtain the form of UMPT for H: $\theta \leq \theta_0$ versus K: $\theta > \theta_0$. Show that its power function $\beta_{\varphi}(\theta)$ is strictly increasing for all θ for which $0 < \beta_{\varphi}(\theta) < 1$. Apply this to obtain UMPT for one-parameter exponential family.

(b) Derive UMP test for one-sided hypotheses concerning the parameter of a Poisson Process under 'Inverse Poisson Sampling'. (14+6)

- 20. Let $f_1, f_2, \ldots, f_{m+1}$ be real-valued μ -integrable functions and let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be given constants. Let $\mathscr{C} = \{ \phi \mid \int \phi f_i \, d\mu = \alpha_i , i = 1, 2, \ldots, m \}$ be a class of critical functions. Establish the existence of a critical function in \mathscr{C} , sufficient condition and necessary condition on the form of the critical function in \mathscr{C} for maximization of $\int \phi f_{m+1} \, d\mu$.
- 21. (a) Discuss UMPUT for H: θ = θ₀ versus K: θ ≠ θ₀ where θ is a single interesting parameter in a multiparameter exponential family.
 (b) Obtain UMPUT for testing the independence of attributes in a 2 x 2 contingency table. (8+12)
- 22. Based on independent samples $X_1, ..., X_m$ from N (μ_1, σ_1^2) and $Y_1, ..., Y_n$ from N(μ_2, σ_2^2), consider the problem of testing H: $\sigma_2^2 / \sigma_1^2 \le \Delta_0$ versus K: $\sigma_2^2 / \sigma_1^2 > \Delta_0$. Obtain (a) UMPUT and (b) UMPIT under a suitable group of transformations; and show that they coincide. (10+10)

* * * * * * *